Saturday, 26 May 2018

CLASS XI CHAPTER 3 TRIGONOMETRIC FUNCTIONS RR ACADEMY MEERUT

Chapter 3: Trigonometric Functions

Exercise 3.1
Q.1: Calculate the radian measurement of the given degree measurement:
(i).  25
(ii).  240
(iii).  −4730'
(iv).  520

Sol:
(i).  25
As we know that, 180 = π radian
Therefore, 25 = π180×25 radian = 5π36 radian
Hence, 25 = 5π36 radian

(ii).  240
As we know that 180 = π radian
Therefore, 240 = π180×240 radian = 4π3 radian
Hence, 240 = 4π3 radian

(iii).  −4730'
−4712
−952 degree
As we know that, 180 = π radian
Therefore, −952 degree = π180×−952 radian = −1936×2π radian = −1972π
Hence−4730' = −1972π

(iv).  520
As we know that, 180 = n radian
Therefore, 520 = π180×520 radian = 26π9 radian
Hence, 520 = 26π9 radian


Q.2: Calculate the degree measurement of the given degree measurement: [Use π = 227]
(i) 1116

(ii) -4

(iii) 5π3

(iv) 7π6

Sol:
(i).  1116:
As we know, that Π Radian = 180°
Therefore, 1116 radian = 180π×1116 degree
45×11π×4 degree
45×11×722×4 degree
3158 degree
3938 degree
39+3×608 minute  [1 = 60’]
39+22'+12 minute
39+22'+30”  [1’ = 60’’]

(ii).  -4:
As we know, that Π Radian = 180°
Therefore, -4 radian = 180π×(−4) degree
180×7(−4)22 degree
−252011 degree
−229111 degree
−229+1×6011 minutes     [1 = 60’]
−229+5'+511
−229+5'+27” [1’ = 60’’]

(iii).  5π3
As we know, that Π Radian = 180°
Therefore, 5π3 radian = 180π×5π3 degree
300

(iv).  7π6
As we know, that Π Radian = 180°
Therefore, 7π6 radian = 180π×7π6
210


Q.3: In a minute, wheel makes 360 revolutions. Through how many radians does it turn in 1 second?
Answer:
No. of revolutions made in a minute = 360 revolutions
Therefore, no. of revolutions made in a second = 36060 = 6
In one revolution, the wheel rotates an angle of 2π radian.
Therefore, in 6 revolutions, it will turn an angle of 12π radian.


Q.4: Calculate the degree measurement of the angle subtended at the centre of a circle of radius 100 m by an arc of length 22 m.
[Use π = 227]
Answer:
As we know,
In a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then, θ=lr
Given:
r = 100 m and L = 22 m
We have,
θ=22100 radian
180π×22100 degree
180×7×2222×100 degree
12610 degree
1235 degree
1236' [1 = 60’]
Therefore, the req angle is 1236'


Q.5: In a circle of diameter 40 m, the length of the chord 20 m. Find the length of minor arc of chord.
Answer:
Diameter of circle = 40 m
Radius of circle = 4020 m = 20 m
Let XY be the chord (length = 20 m) of the circle.
In ΔOXY, OX = OY  = radius of the circle = 20 m
XY = 20 m
Therefore,
ΔOXY is an equilateral triangle.
θ=60 = π3 radian
As we know,
In a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then, θ = lr
π3 = arc(AB)20
arc(AB)20 = 20π3 m
The length of the minor arc of the chord is 20π3 m.


Q.6: In two circles, arcs which has same length subtended at an angle of 60 and 75 at the center. Calculate the ratio of their radii.
 Sol:
Let, the radii of two circles be r1 and r2.
Let, an arc of length l subtend an angle of 60 at the center of the circle of radius r1, while let an arc of length l subtend an angle of 75 at the center of the circle of radius r2.
60 = π3 radian
75 = 5π12 radian
In a circle of radius r unit, if an arc of length l unit subtends an angle θ then:
θ = lr
l = r θ
l = r1π3
l = r25π12
r1π3 = r25π12
r1 = r254
r1r2 = 54
Therefore, the ratio of radii is 5: 4

Q.7: Calculate the angle in radian through which a pendulum swings if the length is 75 cm and the tip describes an arc of length
(i) 10 cm

(ii) 15 cm

(iii) 21 cm

Sol:
As we know that, in a circle of radius ‘r’ unit, if an arc of length ‘l’ unit subtends an angle θ radian at the center, then:
θ=lr
Here, r = 75 cm
(i).  10 cm:
θ = 1075 radian = 215 radian

(ii).  15 cm:
θ = 1575 radian = 15 radian

(iii).  21 cm:
θ = 2175 radian = 725 radian


Exercise 3.2
Q.1: Calculate the values of five trigonometric func. if cosy = 12 and y lies in 3rd quadrant.
Sol:
(i)  sec y :
Since, cos y = 12
Therefore, sec y = 1cosy = 1(12)
Hence, sec y = -2

(ii)  sin y :
Since, sin2y+cos2y=1
Therefore, sin2y=1−cos2y
 sin2y=1−(12)2
 sin2y=1−14
 sin2y=34
 siny3√2
Since, y lies in the third quadrant, the value of sin y will be negative.
Therefore, sin y = 3√2

(iii)  cosec y = 1siny = 1(3√2) = 23√
Therefore, cosec y = 23√

(iv)  tan y = sinycosy = tany=(3√2)(12) = 3–√
Therefore, tan y = 3–√

(v)  cot y = 1tany = 13√
Therefore, cot y = 13√


Q.2: Calculate the other five trigonometric function if we are given the values for sin y = 35, where y lies in second quadrant.
Sol:
sin y = 35
Therefore, cosec y = 1Siny = 135=53
Since, sin2y+cos2y=1
  cos2y=1–sin2y
  cos2y=1–(35)2
 cos2y=1–925
 cos2y=1625
 cos y = ±45
Since, y lies in the 2nd quadrant, the value of cos y will be negative,
Therefore, cos y = – 45
 sec y = 1cosy=1(45)=–54
 tan y = sinycosy=(35)(45)=−34
 cot y = 1tany=−43


 Q.3: Find the values of other five trigonometric functions if coty=34, where y lies in the third quadrant.
Sol:
cot y = 34
Since, tan y = 1coty=134=43
Since, 1+tan2y=sec2y
  1+(43)2=sec2y
  1+169=sec2y
  259=sec2y
  sec y = ±53
Since, y lies in the 3rd quadrant, the value of sec y will be negative.
Therefore, sec y = 53
cos y = 1secy=1(53)=–35
Since, tan y = sinycosy
  43=siny(35)
 sin y = (43)×(35)=−45
  cosec y = 1siny=−54


Q.4: Find the values of other five trigonometric if secy=135, where y lies in the fourth quadrant.
Sol:
sec y = 135
cos y = 1secy=1(135)=513
Since, sin2y+cos2y=1
   sin2y=1–cos2y
   sin2y=1–(513)2
   sin2y=1–25169=144169
 sin y = ±1213
Since, y lies in the 4th quadrant, the value of sin y will be negative.
Therefore, sin y = 1213
 cosec y = 1siny=1(1213)=−1312
 tan y = sinycosy=(1213)(513)=−125
 cot y = 1tany=1(125)=−512


Q.5: Find the values of other five trigonometric function if tan y = 512 and y lies in second quadrant.
Sol:
tan  y = 512   [Given]
And, cot y = 1tany=1(512)=–125
Since, 1+tan2y=sec2y
Therefore, 1+(512)2=sec2y
   sec2y=1+(25144)
  sec2y=169144
 sec y = ±1312
Since, y lies in the 2nd quadrant, the value of sec y will be negative.
Therefore, sec  y = 1312
cos y = 1secy=1(1312)=(1213)
Since, tany=sinycosy
  512=siny(1213)
 sin y = (512)×(1213)=513
 cosec y = 1siny=1(513)=135


Q.6: Calculate the value of trigonometric function sin 765°.
Sol:
The values of sin y repeat after an interval of 360° or 2n.
Therefore, sin 765° = sin ( 2 × 360° + 45° ) = sin 45° = 12√


Q.7: Calculate the value of trigonometric function cosec [-1410°]
 Sol:
It is known that the values of tan y repeat after an interval of 360° or 2n.
Therefore, cosec [-1410°] = cosec [-1410° + 4 × 360°] = cosec [ -1410° + 1440°] = cosec 30° = 2


Q.8: Calculate the value of the trigonometric function tan19π3.
Sol:
It is known that the values of tan y repeat after an interval of 360° or 2n.
Therefore, tan19π3 = tan613π = tan(6π+π3) = tanπ3 = tan 60° = 3–√


Q.9: Calculate the value of the trigonometric function sin(11π3).
 Answer:
It is known that the values of tan y repeat after an interval of 360° or 2n.
Therefore, sin(11π3) = sin(11π3+2×2π) = sinπ3 = 3√2


Q.10: Calculate the value of the trigonometric function cot(15π4).
 Sol:
It is known that the values of tany repeat after an interval of 180 or n.
Therefore, cot(15π4) = cot(15π4+4π) = cotπ4 = 1


Exercise 3.3
Q.1: Prove:
sin2π6+cos2π3–tan2π4=−12

Sol:
Now, taking L.H.S.
sin2π6+cos2π3–tan2π4:
(12)2+(12)2–(1)2
14+14–1 = 12
= R.H.S.


Q.2: Prove:
2sin2π6+cosec27π6cos2π3=32

Sol:
Now, taking L.H.S.
2sin2π6+cosec27π6cos2π3 :
2(12)2+cosec2(π+π6)(12)2
14+(cosecπ6)2(14)
12+(−2)2(14)
12+44
12+1
32
= R.H.S.


Q.3: Prove:
cot2π6+cosec5π6+3tan2π6=6

Sol:
Taking L.H.S.
cot2π6+cosec5π6+3tan2π6 :
(3–√)2+cosec(ππ6)+3(13√)2
3+cosecπ6+3×13
= 3 + 2 + 1 = 6
= R.H.S.


Q.4: Prove:
2sin23π4+2cos2π4+2sec2π3=10

Sol:
Now, taking L.H.S.
2sin23π4+2cos2π4+2sec2π3 :
2{sin(ππ4)}2+2(12√)2+2(2)2
2{sinπ4}2+2×12+8
2(12√)2 + 1 + 8
= 1 + 1 + 8 = 10
= R.H.S.


Q.5: Calculate the value of:
(i).  sin75

(ii).  tan15

Sol:
(i).  sin75:
sin(45+30)
sin45cos30+cos45sin30
Since, [sin (x + y) = sin x cos y + cos x sin y]
(12√)(3√2)+(12√)(12)
3√22√+122√
3√+122√

(ii).  tan15:
tan(45–30)
tan45–tan301+tan45tan30
Since, [tan (x – y) = tanx–tany1+tanxtany]
1–13√1+1(13√)
3√–13√3+1√3√
3√–13√+1
(3√–1)2(3√+1)(3√–1)
3+1–23√(3√)2–(1)2
4–23√3–1
2–3–√


Q.6:Prove:
cos(π4x)cos(π4y)–sin(π4x)sin(π4y)=sin(x+y)

Sol:
Now, taking L.H.S.
cos(π4x)cos(π4y)–sin(π4x)sin(π4y):
12[2cos(π4x)cos(π4y)]+12[−2sin(π4x)sin(π4y)]
=12[cos{(π4x)+(π4y)}+cos{(π4x)(π4y)}]+12[cos{(π4x)+(π4y)}–cos{(π4x)(π4y)}]
Since, [2cos A cos B = cos (A + B) + cos (A – B)]
And, [2sin A sin B = cos (A + B) – cos (A – B)]
12[cos{(π4x)+(π4y)}]
cos[π2–(x+y)]
= sin (x + y)
= R.H.S.


Q.7: Prove:
tan(π4+x)tan(π4x)=(1+tanx1–tanx)2

Sol:
Since, tan (A + B)= tanA+tanB1–tanAtanB
And, tan (A – B) = tanA–tanB1+tanAtanB
Now, taking L.H.S.
tan(π4+x)tan(π4x):
(tanπ4+tanx1–tanπ4tanx)(tanπ4–tanx1+tanπ4tanx)
(1+tanx1–tanx)(1–tanx1+tanx)
(1+tanx1–tanx)2
= R.H.S.


Q.8: Prove:
cos(π+x)cos(−x)sin(πx)cos(π2+x)=cot2x

Sol:
Now, taking L.H.S.
cos(π+x)cos(−x)sin(πx)cos(π2+x):
[−cosx][cosx](sinx)(−sinx)
−cos2x−sin2x = cot2x
= R.H.S.


Q.9: Prove:
cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]=1

Sol:
Now, taking L.H.S.
cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]:
sinxcosx[tanx+cotx]
sinxcosx(sinxcosx+cosxsinx)
(sinxcosx)[sin2x+cos2xsinxcosx]
sin2x+cos2x = 1
= R.H.S.


Q.10: Prove:
sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

Sol:
Now, taking L.H.S.
sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x:
=12[2sin(n+1)xsin(n+2)x+2cos(n+1)xcos(n+2)x]
=12[cos{(n+1)x–(n+2)x}–cos{(n+1)x+(n+2)x}+cos{(n+1)x+(n+2)x}+cos{(n+1)x–(n+2)x}]
Since, [2sin A sin B = cos (A + B) – cos (A – B)]
And, [2cos A cos B = cos (A + B) + cos (A – B)]
12×2cos{(n+1)x–(n+2)x}
cos(−x) = cos x
= R.H.S.


Q.11 Prove:
cos(3π4+x)–cos(3π4x)=−2–√sinx

Sol:
Since, cos A – cos B = −2sin(A+B2)sin(AB2)
Now, taking L.H.S.
cos(3π4+x)–cos(3π4x):
−2sin{(3π4+x)+(3π4x)2}sin{(3π4+x)(3π4x)2}
−2sin(3π4)sinx
−2sin(ππ4)sinx
−2sinπ4sinx
−2×12√×sinx
−2–√sinx
= R.H.S.


Q.12: Prove:
sin26x–sin24x=sin2xsin10x

Sol:
Since, sin A + sin B = 2sin(A+B2)cos(AB2)
And, sin A – sin B = 2cos(A+B2)sin(AB2)
Now, taking L.H.S.
sin26x–sin24x:
(sin6x+sin4x)(sin6x–sin4x)
[2sin(6x+4x2)cos(6x–4x2)][2cos(6x+4x2)sin(6x–4x2)]
= (2sin 5x cos x) (2cos 5x sin x)
= (2 sin 5x cos 5x) (2 cos x sin x)
= sin 10x sin 2x
= R.H.S.


Q.13: Prove:
cos22x–cos26x=sin4xsin8x

Sol:
Since, cos A + cos B = 2cos(A+B2)cos(AB2)
And, cos A – cos B = 2sin(A+B2)sin(AB2)
Now, taking L.H.S.
cos22x–cos26x:
= (cos 2x + cos 6x)  (cos 2x – cos 6x)
[2cos(2x+6x2)cos(2x–6x2)][−2sin(2x+6x2)sin(2x–6x2)]
= [2cos 4x cos (-2x)]   [ -2sin 4x sin ( -2x)]
= [2cos 4x cos 2x]  [-2sin 4x ( -sin2x)]
= [2sin 4x cos 4x]  [2sin 2x cos 2x]
= sin 8x sin 4x
= R.H.S.


Q.14:Prove:
sin2x+2sin4x+sin6x=4cos2xsin4x

Sol:
Now, taking L.H.S.
sin 2x + 2sin 4x + sin 6x:
= [sin 2x + sin 6x] + 2 sin 4x
[2sin(2x+6x2)(2x–6x2)]+2sin4x
Since, sin A + sin B = 2sin(A+B2)cos(AB2)
= 2sin 4x cos(-2x) + 2sin 4x
= 2sin 4x cos 2x + 2sin 4x
= 2sin 4x (cos 2x + 1)
2sin4x(2cos2x–1+1)
2sin4x(2cos2x)
4cos2xsin4x
= R.H.S.


Q.15: Prove:
cot4x(sin5x+sin3x)=cotx(sin5x–sin3x)

Sol:
Now, taking L.H.S.
cot 4x (sin 5x + sin 3x):
cos4xsin4x[2sin(5x+3x2)cos(5x–3x2)]
Since, sin A – sin B = 2cos(A+B2)sin(AB2)
(cos4xsin4x)[2sin4xcosx]
=2cos 4x cos x . . . . . . . . . . . . . . . (1)
Now, taking R.H.S.
cot x (sin 5x – sin 3x):
cosxsinx[2cos(5x+3x2)sin(5x–3x2)]
sinA–sinB=2cos(A+B2)sin(AB2)
cosxsinx[2cos4xsinx]
= 2 cos 4x cos x . . . . . . . . . . . . . . . . . . . . (2)
From equation (1) and (2):
L.H.S. = R.H.S.


Q.16: Prove:
cos9x–cos5xsin17x–sin3x=−sin2xcos10x

Sol:
Since, cos A – cos B = 2sin(A+B2)sin(AB2)
And, sin A – sin B = 2cos(A+B2)sin(AB2)
Now, taking L.H.S.
cos9x–cos5xsin17x–sin3x:
−2sin(9x+5x2)sin(9x–5x2)2cos(17x+3x2)sin(17x–3x2)
−2sin7xsin2x2cos10xsin7x
sin2xcos10x
= R.H.S.


Q.17: Prove:
sin5x+sin3xcos5x+cos3x=tan4x

Sol:
Since, sin A + sin B = 2sin(A+B2)cos(AB2)
And, cos A + cos B = 2cos(A+B2)cos(AB2)
Now, taking L.H.S.
sin5x+sin3xcos5x+cos3x:
2sin(5x+3x2)cos(5x–3x2)2cos(5x+3x2)cos(5x–3x2)
2sin4xcosx2cos4xcosx = tan 4x
=R.H.S.


Q.18: Prove:
sinx–sinycosx+cosy=tanxy2

Sol:
Since, cos A + cos B = 2cos(A+B2)cos(AB2)
And, sin A – sin B = 2cos(A+B2)sin(AB2)
Now taking L.H.S.
sinx–sinycosx+cosy:
2cos(x+y2)sin(xy2)2cos(x+y2)cos(xy2)
sin(xy2)cos(xy2)
tan(xy2)
= R.H.S.


Q.19: Prove:
sinx+sin3xcosx+cos3x=tan2x

Sol::
Since, sin A + sin B = 2sin(A+B2)cos(AB2)
And, cos A + cos B = 2cos(A+B2)cos(AB2)
Now, taking L.H.S.
sinx+sin3xcosx+cos3x:
2sin(x+3x2)cos(x–3x2)2cos(x+3x2)cos(x–3x2)
sin2xcos2x = tan 2x
= R.H.S.


Q.20: Prove:
sinx–sin3xsin2x–cos2x=2sinx

Answer:
Since, sin A – sin B = 2cos(A+B2)sin(AB2)
cos2A–sin2A=cos2A
Now, taking L.H.S.
sinx–sin3xsin2x–cos2x:
2cos(x+3x2)sin(x–3x2)–cos2x
2cos2xsin(−x)−cos2x
−2x(−sinx) = 2 sin x
= R.H.S.


Q.21: Prove:
cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x

Sol:
Taking L.H.S.
cos4x+cos3x+cos2xsin4x+sin3x+sin2x:
(cos4x+cos2x)+cos3x(sin4x+sin2x)+sin3x
2cos(4x+2x2)cos(4x–2x2)+cos3x2sin(4x+2x2)cos(4x–2x2)+sin3x
⎡⎣⎢sinA+sinB=2sin(A+B2)cos(AB2)cosA+cosB=2cos(A+B2)cos(AB2)⎤⎦⎥
2cos3xcosx+cos3x2sin3xcosx+sin3x
cos3x(2cosx+1)sin3x(2cosx+1) = cot 3x
= R.H.S.


Q.22: Prove:
cotxcot2x–cot2xcot3x–cot3xcotx=1

Sol:
Now, taking L.H.S.
cot x cot 2x – cot 2x cot 3x – cot 3x cot x :
cotxcot2x–cot3x(cot2x+cotx)
cotxcot2x–cot(2x+x)(cot2x+cotx)
cotxcot2x[cot2xcotx–1cotx+cot2x](cot2x+cotx)
[cot(A+B)=cotAcotB–1cotA+cotB]
cotxcot2x–(cot2xcotx–1) = 1
= R.H.S


Q.23: Prove:
tan4x=4tanx(1–tan2x)1–6tan2x+tan4x

Sol:
Since, tan 2A = 2tanA1–tan2A
Now, taking L.H.S.
tan 4x :
tan2(2x)
2tan2x1–tan2(2x)
2(2tanx1–tan2x)1–(2tanx1–tan2x)2
(4tanx1–tan2x)1–⎛⎝4tan2x(1–tan2x)2⎞⎠
=  (4tanx1–tan2x)⎡⎣(1–tan2x)2–4tan2x(1–tan2x)2⎤⎦
4tanx(1–tan2x)(1–tan2x)2–4tan2x
4tanx(1–tan2x)1+tan4x–2tan2x–4tan2x
4tanx(1–tan2x)1–6tan2x+tan4x
= R.H.S.


Q.24: Prove:
cos4x=1–8sin2xcos2x

Sol:
Now, taking L.H.S.
cos 4x:
cos2(2x)
1–2sin22x[cos2A=1–2sin2A]
1–2(2sinxcosx)2[sin2A=2sinAcosA]
1–8sin2xcos2x
= R.H.S.


Q.25: Prove:
cos6x=32cos6x–48cos4x+18cos2x−1

Sol:
Now, taking L.H.S.
cos 3 (2x ):
4cos32x–3cos2x[cos3A=4cos3A–3cosA]
4(2cos2x–1)3–3(2cos2x−1)[cos2x=2cos2x−1]
4[(2cos2x)3–(1)3–3(2cos2x)2+3(2cos2x)]–6cos2x+3
4[8cos6x–1–12cos4x+6cos2x]–6cos2x+3
32cos6x–4–48cos4x+24cos2x–6cos2x+3
32cos6x–48cos4x+18cos2x−1
= R.H.S.


Exercise 3.4
 Q.1: Find general solutions and the principle solutions of the given equation: tan x = 3–√

Sol:
tan x = 3–√    [Given]
As we know that, tanπ3=3–√
And, tan4π3 = tan(π+π3) = tan(π3) = 3–√
Therefore, the principle solutions are x=π3 and 4π3
Now, tanx=tanπ3
x=+π3, where n  Z
Therefore, the general solution is x=+π3, where n  Z.


Q.2: Find general solutions and the principle solutions of the given equation: sec x = 2

Sol:
sec x = 2   [Given]
As we know that, secπ3=2
And, sec5π3 = sec(2ππ3) = secπ3 = 2
Therefore, the principle solutions are x=π3 and 5π3.
Now, secx=secπ3
And, cosx=cosπ3[secx=1cosx]
x=2±π3, where n  Z
Therefore, the general solution is x=2±π3, where n  Z.


Q.3: Find general solutions and the principle solutions of the given equation:
cot = −3–√

Sol:
cot = −3–√          [Given]
As we know that, cotπ6=3–√cot(ππ6)=−cotπ6=−3–√
And, cot(2ππ6) = −cotπ6 = −3–√
That is cot5π6=−3–√ and cot11π6=−3–√
Therefore, the principle solutions are x=5π6 and 11π6.
Now,cotx=cot5π6
And, tanx=tan5π6[cotx=1tanx]
x=+5π6, where n  Z
Therefore, the general solution is x=+5π6, where n  Z.


Q.4: Find general solutions and the principle solutions of the given equation: cosec x = -2

Sol:
cosec x = -2     [Given]
As we know that, cosecπ6=2
Hence, cosec(π+π6) = cosecπ6 = -2
And, cosec(2ππ6) = cosecπ6 = -2
That is cosec7π6=−2 and cosec11π6=−2.
Therefore, the principle solutions are x=7π6 and 11π6.
Now,cosecx=cosec7π6
And, sinx=sin7π6[cosecx=1sinx]
x=+(−1)n7π6, where n  Z
Therefore, the general solution is x=+(−1)n7π6, where n  Z.


Q.5: Find the general solution of the given equation: cos 4x = cos 2x
Sol:
cos 4x = cos 2x           [Given]
i.e.  cos 4x – cos 2x = 0
−2sin(4x+2x2)sin(4x–2x2)=0
Since, cos A – cos B = 2sin(A+B2)sin(AB2)
(sin 3x)  (sin x) = 0
sin 3x = 0  or  sin x = 0
sin 3x = 0
3x=
x=3, where n  Z
sin x = 0
  x=, where n  Z
Q.6: Find the general solution of the given equation: cos 3x + cos x – cos 2x = 0
Sol:
cos 3x + cos x – cos 2x = 0        [Given]
2cos(3x+x2)cos(3xx2)–cos2x=0
Since, cos A + cos B = 2cos(A+B2)cos(AB2)
2cos 2x cos x – cos 2x = 0
cos 2x (2cos x – 1) = 0
cos 2x = 0  or  2cos x -1 = 0
cos 2x = 0
2x=(2n+1)π2, where n  Z
x=(2n+1)π4, where n  Z
2cos x -1 = 0
cosx=12
cosx=cosπ3, where n  Z
x=2±π3, where n  Z


Q.7: Find the general solution of the given equation:  sin 2x + cos x = 0

Sol:
sin 2x + cos x = 0          [Given]
2sin x cos x + cos x = 0
cos x (2sin x + 1) = 0
cos x = 0   or   2sin x + 1 = 0
cos x = 0
cosx=(2n+1)π2, where n  Z
2sin x + 1 = 0
−sinπ6 = sin(π+π6) = sin7π6
  x=+(−1)n7π6, where n  Z
Therefore, the general solution is (2n+1)π2 or +(−1)n7π6, where n  Z.


Q.8: Find the general solution of the given equation:
sec22x=1–tan2x

Sol:
sec22x=1–tan2x           [Given]
1+tan22x=1–tan2x tan22x+tan2x=0
tan 2x ( tan 2x + 1) = 0
tan 2x = 0  or  tan 2x + 1 = 0
tan 2x = 0
tan 2x = tan 0
2x = n∏ + 0, where n  Z
x=2, where n  Z
tan 2x + 1 = 0
tan 2x = -1−tanπ4tan(ππ4)tan3π4
  2x=+3π4, where n  Z
  x=2+3π8, where n  Z
Therefore, the general solution is 2 or 2+3π8, where n  Z.


Q.9: Find the general solution of the given equation:  sin x + sin 3x + sin 5x = 0

Sol:
sin x + sin 3x + sin 5x = 0              [Given]
(sin x + sin 5x) + sin 3x = 0
[2sin(x+5x2)cos(x–5x2)]+sin3x=0
Since, sin A + sin B = 2sin(A+B2)cos(AB2)
2sin 3x cos (-2x) + \sin 3x = 0
2sin 3x cos 2x + sin 3x = 0
sin 3x (2cos 2x + 1) = 0
sin 3x = 0 or  2cos 2x + 1 = 0
Now,
sin 3x = 0
3x=, where n  Z
x=3, where n  Z
2cos 2x + 1 = 0
cos2x=−12 = −cosπ3 = cos(ππ3) = cos2π3
2x=2±2π3, where n  Z
x=±π3, where n  Z
Therefore, the general solution is 3 or ±π3, where n  Z.


Miscellaneous Exercise
 Q.1: Prove that:
2cosπ13cos9π13+cos3π13+cos5π13=0

Sol:
Taking L.H.S.
2cosπ13cos9π13+cos3π13+cos5π13 :
2cosπ13cos9π13+2cos(3π13+5π132)cos(3π135π132)
Since, [cosx+cosy=2cos(x+y2)cos(xy2)]
2cosπ13cos9π13+2cos4π13cos(π13)
2cosπ13cos9π13+2cos4π13cosπ13
2cosπ13[cos9π13+cos4π13]
2cosπ13[2cos(9π13+4π132)cos(9π134π132)]
2cosπ13[2cosπ2cos5π26]
2cosπ13×2×0×cos5π26
= 0
= R.H.S.
Therefore, 2cosπ13cos9π13+cos3π13+cos5π13=0


Q.2: Prove that:
(sin3x+sinx)sinx+(cos3x–cosx)cosx=0

Sol:
Taking L.H.S.
(sin3x+sinx)sinx+(cos3x–cosx)cosx :
sin3xsinx+sin2x+cos3xcosx–cos2x
cos3xcosx+sin3xsinx(cos2x–sin2x)
cos(3xx)–cos2x
Since, [cos(AB)=cosAcosB+sinAsinB]
cos2x–cos2x
= 0
= R.H.S.
Therefore, (sin3x+sinx)sinx+(cos3x–cosx)cosx=0


Q-3: Prove that:
(cosx+cosy)2+(sinx–siny)2=4cos2x+y2

Sol:
Taking L.H.S.
(cosx+cosy)2+(sinx–siny)2 :
cos2x+cos2y+2cosxcosy+sin2x+sin2y–2sinxsiny
(cos2x+sin2x)+(cos2y+sin2y)+2(cosxcosy–sinxsiny)
1+1+2cos(x+y)
Since, [cos(A+B)=cosAcosB–sinAsinB]
2+2cos(x+y)
2[1+cos(x+y)]
2[1+2cos2(x+y2)–1]
Since, [cos2A=2cos2A–1]
4cos2(x+y2)
= R.H.S.
Therefore, (cosx+cosy)2+(sinx–siny)2=4cos2x+y2


Q-4: Prove that:
(cosx–cosy)2+(sinx–siny)2=4sin2xy2

Sol:
Taking L.H.S.
(cosx–cosy)2+(sinx–siny)2 :
cos2x+cos2y–2cosxcosy+sin2x+sin2y–2sinxsiny
(cos2x+sin2x)+(cos2y+sin2y)–2(cosxcosy–sinxsiny)
1+1–2[cos(xy)]
Since, [cos(AB)=cosAcosB+sinAsinB]
2[1–cos(xy)]
2[1–{1–2sin2(xy2)}]
Since, [cos2A=1–2sin2A]
4sin2xy2
= R.H.S.
Therefore, (cosx–cosy)2+(sinx–siny)2=4sin2xy2


Q-5: Prove that:
sinx+sin3x+sin5x+sin7x=4cosxcos2xcos4x

Sol:
Taking L.H.S.
sinx+sin3x+sin5x+sin7x :
(sinx+sin5x)+(sin3x+sin7x)
2sin(x+5x2)cos(x–5x2)+2sin(3x+7x2)cos(3x+7x2)
Since, [sinA+sinB=2sin(A+B2).cos(AB2)]
2sin3xcos(−2x)+2sin5xcos(−2x)
2sin3xcos2x+2sin5xcos2x
2cos2x[sin3x+sin5x]
2cos2x[2sin(3x+5x2).cos(3x–5x2)]
2cos2x[2sin4x.cos(−x)]
4cos2xsin4xcosx
= R.H.S.
Therefore, sinx+sin3x+sin5x+sin7x=4cosxcos2xcos4x


Q-6: Prove that:
(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x

Sol:
Since, sinA+sinB=2sin(A+B2).cos(AB2)
And, cosA+cosB=2cos(A+B2).cos(AB2)
Taking L.H.S.
(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x) :
[2sin(7x+5x2).cos(7x–5x2)]+[2sin(9x+3x2).cos(9x–3x2)][2cos(7x+5x2).cos(7x–5x2)]+[2cos(9x+3x2).cos(9x–3x2)]
[2sin6x.cosx]+[2sin6x.cos3x][2cos6x.cosx]+[2cos6x.cos3x]
2sin6x[cosx+cos3x]2cos6x[cosx+cos3x]
tan6x
= R.H.S.
Therefore, (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x


Q-7: Show that: sin3y+sin2y–siny=4sinycosy2cos3y2

Sol:
Here, L.H.S = sin3y+sin2y–siny
sin3y+(sin2y−siny)=sin3y+[2cos(2y+y2)sin(2yy2)]
Since,  (sinx–siny)=[2cos(x+y2)sin(xy2)]
sin3y+[2cos(3y2)sin(y2)]
=[2sin(3y2)cos(3y2)]+[2cos(3y2)sin(y2)]
Since, sin 2x = 2 sin x cos x
=2cos3y2[sin 3y2+siny2]
=2cos3y2[sin (3y2+y2)2][cos (3y2y2)2]
Since, sin x + sin y = 2sin(x+y2)cos(xy2)
=2cos(3y2)2sinycos(y2) =4sinycos(y2)cos(3y2)
= R.H.S


Q-8: The value of tany=−43 where y in in 2nd quadrant then find out the values of siny2,cosy2andtany2.

Sol:
Here, y is in 2nd quadrant.
So, π2<y<ππ4<y2<π2
Thus, siny2,cosy2andtany2 lies in 1st quadrant.
Now,
tany=−43 sec2y=1+tan2y=1+(43)2=1+169=259
So, cos2y=925
cosy35
As y is in 2nd quadrant, cos y is negative.
cosy=−35
So, cos y = 2cos2y2–1
−35=2cos2y2–12cos2y2=1–−352cos2y2=252cos2y2=152cos2y2=35√  [Since, cosy2 is positive]
cosy2=5√5sin2y2+cos2y2=1sin2y2+cos215√=1sin2y2=1–15=45sin2y2=25√  [Since,  siny2 is positive]
sin2y2=25√5tany2=siny2cosy2=25√15√=2


Q-9: The value of cosy=−13 where y in in 3rd quadrant then find out the values of siny2,cosy2andtany2.

Sol:
Here, y is in 3rd  quadrant.
So, π<y<3π2π2<y2<3π4
Thus, cosy2andtany2 are negative and siny2 is positive.
Now,  cosy=−13  [Given]
cosy=1–2sin2y2sin2y2=1–cosy2sin2y2=1–−132=1+132=23
siny2=2√3√×3√3√=6√3   [Since, siny2 is positive]
Now, cosy=2cos2y2–1
2cos2y2=1+cosy2=1–132=13
   cosy2=−13√=−13√×−3√3=−13√
Therefore, tany2=siny2cosy2=2√3√−13√=−2–√


Q-10: The value of siny=14 where y in in 2nd quadrant then find out the values of siny2,cosy2andtany2.

Sol:
Here, y is in 2nd quadrant.
So, π2<y<ππ4<y2<π2
Thus, siny2,cosy2andtany2 lies in 1st quadrant.
Now, siny=14
cos2y=1–2sin2y=1–(14)2=1–116=1516cosy=−15√4  [Since, cosy is negative]
sin2y2=1–(−15√4)2=4+15√8
   siny2=4+15√8−−−−−  [ Since, siny2 is positive ]
=4+15√8×22−−−−−−−−=8+215√16−−−−−−=8+2154
cos2y=1+cosy2=1+(−15√4)2=4–15√8
Therefore, cosy2=4–15√8−−−−− = 4–15√8×22−−−−−−−−
8–215√16−−−−−=8–2154
Now, tany2=siny2cosy2=(8+215√4)(8−215√4)
8+215√8–215√=8+215√8–215√×8+215√8+215√
(8+215√)264−60√=8+215√2=4+15−−√

No comments:

Post a Comment

google.com, pub-5312518911501427, DIRECT, f08c47fec0942fa0

RAKESH CHATURVEDI SIR HOME TUITION IN MEERUT BEST TEACHER IN MEERUT

 BEST TEACHER OF MATHEMATICS IN GANGA NAGAR MEERUT ER. RAKESH CHATURVEDI SIR . A WELL EXPERIENCED TEACHER IN GANGA NAGAR MEERUT RAKESH SIR I...